

SQFlash SMART ID Definition

(For 830, 910, 640 Series)

Initiated by	Leif.Tsai	Job Title	Emb'Core AE	Release Date	2017/06/20
Reviewed by		Job Title		Revision	#1.0
Approved by	Precyan.Lee	Job Title	Emb'Core PM	Release Status	Formal Release

Drawings and specifications herein are property of Advantech and shall not be reproduced or copied or used without prior written permission.

Table of Contents

1.	Table of SMART ID	3
2.	How to look up table	4
3.	SMART ID Statement	5

Page 2 of 10

1. Table of SMART ID

		DATA ADDRESS (Byte)								
		10	9	8	7	6	5			
01h	Raw_Read_Error_Rate	Uncorrectable ECC Count								
09h	Power_On_Hours					Power on Hours				
0Ch	Power_Cycle_Count				Рс	ower on/off counts				
0Eh	Device Capacity	0	0			Device Capacity				
0Fh	User Capacity	0	0			User Capacity				
10h	Initial Spare Blocks Available	0	0			Total Available Spare Block				
11h	Spare Blocks Remaining	0	0			Remaining Spare Block				
64h	Total Erase Count	0	0			Total Erase Count				
A8h	SATA PHY Error Count				SA	TA PHY Error Count				
AAh	Bad Block count	Later	Bad	0	0	Early Bad				
ADh	Erase count	0	0	Avg.	Erase	Max Erase				
AEh	Unexpected Power Loss Count	0	0			Unexpected Power Loss Cou	nt			
٨٢٣	Dowor Failure Protection Status	Voltage	e Stabili	zer Trigger		Guaranteed Flush	Drive Status			
AFII	Power Failure Protection Status		Coun	t		(0x01 Enable)	(0x00 Normal)			
C0h	Unexpected Power Loss Count	0	0	0	0	Unexpected Power Lo	ss Count			
C2h	Temperature	Max Te	emp.	Min T	emp.	Current Temp				
CAh	Percentage of Spares Remaining	0	0	0	0	0	SSD Life Used			
DAh	CRC error					CRC Error Count				
E7h	SSD Life Remaining	0	0	0	0	0	SSD Life Left			
EAh	Total NAND Read			Т	otal NA	AND Read (Sector, 512B)				
EBh	Total NAND Written			Tot	al NA	ND Written (Sector, 512B)				
F1h	Total Host Write				Host	Write (Sector, 512B)				
F2h	Total Host Read				Host	Read (Sector, 512B)				

2. How to look up table

The raw data you get from the SQFlash Utility is Hex code, so you need to look up the table and transfer the Hex data to decimal data. Please refer to the below example:

I get the Temperature value from SSD.

The Raw data is 001D0018001A. After I look up the table and separate the Raw data in to 3 value as below table.

ID		DATA ADDRESS (Byte)								
		10	9	8	7	6	5			
C2h	Temperature	Max Temp.		Min Temp.		Current Temp.				
		001D		0018		001A				

And then I can get 3 value,

Max Temp.= 001D (Hex)= 29 (decimal)Min Temp.= 0018 (Hex)= 24 (decimal)Current Temp.= 001A (Hex)= 26 (decimal)

Page 4 of 10

3. SMART ID Statement

ID	ATTRIBUTE_NAME	DATA ADDRESS (Byte)						
		10	9	8	7	6	5	
01h	Raw_Read_Error_Rate	Uncorrectable ECC Count						

Uncorrectable ECC Count is data error coding between SSD controller and NAND flash. This value need to be 0. If the value is not 0, there may be some problem between SSD controller and NAND flash.

ID		DATA ADDRESS (Byte)							
		10	9	8	7	6	5		
09h	Power_On_Hours	Power on Hours							

Power on Hours is a counter that counts the power on time of the SSD, and the unit is hour.

ID	ATTRIBUTE_NAME	DATA ADDRESS (Byte)						
		10	9	8	7	6	5	
0Ch	Power_Cycle_Count	Power on/off counts						

When SSD has one power on and power off cycle, the counter will add one.

10	ATTRIBUTE_NAME	DATA ADDRESS (Byte)						
טו		10	9	8	7	6	5	
0Eh	Device Capacity	0	0	Device Capacity				

This value is the capacity of the storage, each count equals to 512 Byte.

ID			DATA ADDRESS (Byte)						
		10	9	8	7	6	5		
0Fh	User Capacity	0	0	User Capacity					

This Value is the capacity that user can use, each count equal to 512 Byte.

п		DATA ADDRESS (Byte)						
		10	9	8	7	6	5	
10h	Initial Spare Blocks Available	0	0	Total Available Spare Block				

The spare block counts when the SSD is newly made.

ID		DATA ADDRESS (Byte)						
		10	9	8	7	6	5	
11h	Spare Blocks Remaining	0	0	Remaining Spare Block				

The current available spare blocks.

ID	ATTRIBUTE_NAME		DATA ADDRESS (Byte)							
		10	9	8	7	6	5			
64h	Total Erase Count	0	0	Total Erase Count						

Sum of erase count from all blocks.

ID	ATTRIBUTE_NAME	DATA ADDRESS (Byte)							
		10	9	8	7	6	5		
A8h	SATA PHY Error Count	SATA PHY Error Count							

SATA PHY Error Count will record all PHY error count (ex data FIS CRC, code error, disparity error, command FIS CRC....). This value will reset to zero, after power off. If you found a lot of SATA PHY error, please help to use new SATA cable or check if the SATA connector is loose or not.

Page 6 of 10

ID	ATTRIBUTE_NAME	DATA ADDRESS (Byte)							
		10	9	8	7	6	5		
AAh	Bad Block count	Later Bad		0	0	Early Bad			

Block is a capacity unit of NAND flash. And the bad block is the damaged block that SSD controller mark as "no use". There are two kind of bad block, one is Early bad block, another one is Later bad block.

- Early bad block is the bad block that caused during manufacture. SQF standard is less than 2%.
- Later bad block is caused by artificial usage. If the block has too many ECC, the SSD controller will mark the block as Later bad block. But it also need to check the erase count. If the SSD is going to run out of their lifetime, the Later bad blocks are normal.

ID	ATTRIBUTE_NAME	DATA ADDRESS (Byte)								
		10	9	8	7	6	5			
ADh	Erase count	0	0	Avg. Erase		Max Erase				

Erase count is the parameter that we check the lifetime of the SSD. There are two kind of erase count, one is average erase count and another one is max erase count.

- > Average erase count is the average of all block's erase count.
- Max erase count is the biggest erase count of all blocks.

The endurance of the SSD will depend on NAND flash type, please refer to the below table:

NAND flash type	Endurance (times)					
MLC	3,000					
UltraMLC	30,000					
SLC	100,000					

For example, if the average erase count of the MLC SSD is over 3,000 times, it means the SSD is run out of their lifetime.

ID	ATTRIBUTE_NAME		DATA ADDRESS (Byte)							
		10	9	8	7	6	5			
AEh	Unexpected Power Loss Count	0	0	Unexpected Power Loss Count						

If SSD power off before host issue standby command, the Unexpected Power Loss Count will add 1.

ID	ATTRIBUTE_NAME		DATA ADDRESS (Byte)							
		10	9	8	7	6	5			
AFh Power Fa	Dowor Failure Protection Status	Voltage	e Stabiliz	zer Trig	ger	Guaranteed Flush	Drive Status			
	Power Failure Protection Status		Coun	t		(0x01 Enable)	(0x00 Normal)			

The status of power failure protection related functions.

- Voltage Stabilizer Trigger Count: the count of how many times Voltage Stabilizer circuit has been triggered.
- Guaranteed Flush: the feature on/off status
- > Drive Status: error code of power failure protection related functions

ID	ATTRIBUTE_NAME	DATA ADDRESS (Byte)							
		10	9	8	7	6	5		
C0h	Unexpected Power Loss Count	0	0	0	0	Unexpected Power Loss Count			

If SSD power off before host issue standby command, the Unexpected Power Loss Count will add 1.

ID	ATTRIBUTE_NAME	DATA ADDRESS (Byte)							
		10	9	8	7	6	5		
C2h	Temperature	Max Temp.		Min Temp.		Current Temp.			

Current Temperature / Minimum Temperature / Maximum Temperature

Page 8 of 10

ID	ATTRIBUTE_NAME		DATA ADDRESS (Byte)							
		10	9	8	7	6	5			
CAh	Percentage of Spares Remaining	0	0	0	0	0	SSD Life Used			

SSD Life Used, in percentage, calculated by average erase count and NAND reference erase count. SSD Life Left = (Avg. erase count / endurance)%

ID	ATTRIBUTE_NAME	DATA ADDRESS (Byte)							
		10	9	8	7	6	5		
DAh	CRC error	CRC Error Count							

CRC error is the data error coding between controller and host. If the CRC error count is not 0, it means the SATA signal is not good. Please help to check the SATA trace from HOST (PCB layout, SATA cable, SATA connector).

ID	ATTRIBUTE_NAME	DATA ADDRESS (Byte)							
		10	9	8	7	6	5		
E7h	SSD Life Remaining	0	0	0	0	0	SSD Life Left		

SSD Life Left, in percentage, calculated by average erase count and NAND reference erase count.

SSD Life Left = 1 – (Avg erase count / endurance)%

ID	ATTRIBUTE_NAME	DATA ADDRESS (Byte)						
		10	9	8	7	6	5	
EAh	Total NAND Read	Total NAND Read (Sector, 512B)						

The total data size that SSD controller read from NAND flash. The unit is sector (512Byte).

ID	ATTRIBUTE_NAME	DATA ADDRESS (Byte)						
		10	9	8	7	6	5	
EBh	Total NAND Written	Total NAND Written (Sector, 512B)						

The total data size that SSD controller write to NAND flash. The unit is sector (512Byte).

ID	ATTRIBUTE_NAME	DATA ADDRESS (Byte)						
		10	9	8	7	6	5	
F1h	Total Host Write	Host Write (Sector, 512B)						

The total data size that Host write to SSD. The unit is sector (512Byte).

ID	ATTRIBUTE_NAME	DATA ADDRESS (Byte)						
		10	9	8	7	6	5	
F2h	Total Host Read	Host Read (Sector, 512B)						

The total data size that Host read from SSD. The unit is sector (512Byte).

Page 10 of 10